

State of the art Diagnosing Genetic Diseases

Olaf Riess, MD Institute of Medical Genetics and Applied Genomics, Tübingen, Germany

Genetic testing strategies

Why do we need to implement Whole Genome Analysis (WGS) in diagnostics?

Diagnostic sensitivity of todays WES in pediatric diseases

UNSOLVED after WES: 50% of all patients with a rare disease will not have access to health care without having a clear diagnosis

150 Mio patients unsolved

30 Mio patients in Europe 15 Mio unsolved

3-4Mio RD patients in Germany 1.5 Mio unsolved after WES

How can we increase diagnostic sensitivity?

Defining new disease genes Defining new disease mechanisms

Family I: II-6

Family I: II-7

https://enhancer.lbl.gov/gallery_n.html

Effects of mutations in non-coding regions altering gene expression

Disruptions of Topological Chromatin Domains Cause Pathogenic Rewiring of Gene-Enhancer Interactions

Cel

Darío G. Lupiáñez,^{1,2} Katerina Kraft,^{1,2} Verena Heinrich,² Peter Krawitz,^{1,2} Francesco Brancati,³ Eva Klopocki,⁴ Denise Horn,² Hülya Kayserili,⁵ John M. Opitz,⁶ Renata Laxova,⁶ Fernando Santos-Simarro,^{7,8} Brigitte Gilbert-Dussardier,⁹ Lars Wittler,¹⁰ Marina Borschiwer,¹ Stefan A. Haas,¹¹ Marco Osterwalder,¹² Martin Franke,^{1,2} Bernd Timmermann,¹³ Jochen Hecht,^{1,14} Malte Spielmann,^{1,2,14} Axel Visel,^{12,15,16} and Stefan Mundlos^{1,2,14,*}

EN

DNA – Methylation

Colin Farrell's son has Angelman syndrome

COLIN FARRELL is thankful his young son JAMES was diagnosed with neuro-genetic disorder Angelman Syndrome early - because it ended weeks of torment for the actor. The In Bruges star reveals the four-year-old started showing signs of illness just before his first birthday, prompting the Irishman and his former partner, Kim Bordenave, to seek help. In a candid interview on Irish TV show Tubridy Tonight, the actor says, "Ive been very lucky that it was early because he started having seizures at about eight or nine months... We got (an) early intervention." Farrell reveals doctors initially thought his son had cerebral palsy, but the correct diagnosis was fast - and a relief. The actor adds, "Angelman's is a neuro-genetic disorder. The 15th chromosome is dormant. It affects their fine motor skills. They say that one in 30,000 children is affected by it." But the actor refuses to feel sorry for himself or his "little fella": "He's nothing but a gift. As far as I'm concerned, he's exactly the way he should be ... He has his own path. He's just brilliant." Farrell admits he felt terrible when he went public with his son's

he felt terrible when he went public with his son's disorder last year (07) after people started asking questions about the actor's involvement with the Special Olympics. He adds, "I felt like I was betraying him, like it could be misconstrued as shame, which would be terrible, because he's such a celebration."

Technical hurdles in diagnostics

Modified from Shyr and Liu 2013

Multi-platform discovery of haplotype-resolved structural variation in human genomes

Mark J.P. Chaisson^{1,2*}, Ashley D. Sanders^{3*}, Xuefang Zhao^{4,5*}, Ankit Malhotra⁶[†], David Porubsky^{7,8}†, Tobias Rausch³†, Eugene J. Gardner⁹†, Oscar Rodriguez¹⁰†, Li Guo¹¹†, Ryan L. Collins^{5,12}†, Xian Fan¹³†, Jia Wen¹⁴†, Robert E. Handsaker¹⁵†, Susan Fairley¹⁶†, Zev N. Kronenberg¹[†], Xiangmeng Kong¹⁷[†], Fereydoun Hormozdiari^{18,19}[†], Dillon Lee²⁰[†], Aaron M. Wenger²¹†, Alex Hastie²²†, Danny Antaki²³†, Peter Audano¹, Harrison Brand⁵, Stuart Cantsilieris¹, Han Cao²², Eliza Cerveira⁶, Chong Chen¹³, Xintong Chen⁹, Chen-Shan Chin²¹, Zechen Chong¹³, Nelson T. Chuang⁹, Deanna M. Church²⁵, Laura Clarke¹⁶, Andrew Farrell²⁰, Joey Flores²⁶, Timur Galeev¹⁷, David Gorkin^{34, 35}, Madhusudan Gujral²³, Victor Guryev⁷, William Haynes Heaton²⁵, Jonas Korlach²¹, Sushant Kumar¹⁷, Jee Young Kwon⁶, Jong Eun Lee²⁷, Joyce Lee²², Wan-Ping Lee⁶, Sau Peng Lee³⁰, Patrick Marks²⁵, Karine Viaud-Martinez²⁶, Sascha Meiers³, Katherine M. Munson¹, Fabio Navarro¹⁷, Bradley J. Nelson¹, Conor Nodzak¹⁴, Amina Noor²³, Sofia Kyriazopoulou-Panagiotopoulou²⁵, Andy Pang²⁵, Yunjiang Qiu^{24, 27}, Gabriel Rosanio²³, Mallory Ryan⁶, Adrian Stütz³, Diana C.J. Spierings⁷, Alistair Ward²⁰, AnneMarie E. Welch¹, Ming Xiao³¹, Wei Xu²⁵, Chengsheng Zhang⁶, Qihui Zhu⁶, Xiangqun Zheng-Bradley¹⁶, Goo Jun³²Δ, Li Ding³³Δ, Chong Lek Koh²⁹Δ, Bing Ren^{34, 35}Δ, Paul Flicek¹⁶§Δ, Ken Chen¹³§Δ, Mark B. Gerstein^{35,36}§Δ, Pui-Yan Kwok³⁷§Δ, Peter M. Lansdorp^{7,38,39}§Δ, Gabor Marth²⁰§Δ, Jonathan Sebat^{23,28,34}§Δ, Xinghua Shi¹⁴§Δ, Ali Bashir¹⁰§Δ, Kai Ye¹³§Δ, Scott E. Devine⁹§Δ, Michael Talkowski^{5, 41,42,43,44}§Δ, Ryan E. Mills^{4,45}§Δ,Tobias Marschall⁸§Δ, Jan Korbel^{3,18}±§Δ, Evan E. 2018 Eichler^{1,46} \pm § Δ , Charles Lee^{6,47}§ \pm Δ

- Short and long read NGS, and strand specific
- 3 Trios
- 818,181 In/Dels per genome <50bp</p>
- 31,599 structural variants >50bp (7fold higher than reported)
- 156 inversions per genome

Technological hurdles in diagnostics

Solving the unsolvable diseases Transcriptome Challenge in Diagnostic Transition: From genome analysis towards system diagnostics Metabolome Proteome

Coordinators:

Olaf Riess & Holm Graessner

"Pilot Project"

Solve-RD - Solving the unsolved Rare Diseases

European Commission

Horizon 2020 European Union funding for Research & Innovation

Solving the unsolved Rare Diseases

Tomorrow's diagnostics:

Who should do this? How should we do this?

Steps to be undertaken to overcome diagnostic hurdles of rare diseases: Role of European Genome Analytic Hubs

Next step towards European cross border care: EGDRNS

Future developments of Medical Genetics in Medicine?

DISEASE PREDICTION and PREVENTION

Zentrum für Seltene Erkrankunger

Mutation = Preventing side effects

Pharmacogenetics and drug interactions

6 year old **developmentally delayed child with epilepsy died** after high dose of hydrocodone for respiratory tract infection.

ACMG list of actionable genes

CONDITION	GENES	CLINICAL RISK
HBOC	BRCA1 and BRCA2	Early Breast or Ovarian Cancer
Lyn <mark>ch</mark> Syndrome	MLH1, MSH2, MSH6, PMS2	Early Colon or Uterine Cancer
Familial Hyper- cholesterolemia	LDLR, APOB, PCSK9	Early Coronary Artery Disease
Hypertrophic Cardiomyopathy	Multiple genes on list	Cardiac Arrest Heart Transplant

af Ri es s, 1e di zi is :h e Ъе ۱e ik Jn i ū⁻ bi ng en

ZSE TÜBINGEN Zentrum für Seltene Erkrankunger

ЗI

Personal "Omics" Profiling (POP)

Olaf Riess

olaf.riess@med.uni-tuebingen.de

I declare no conflict of interest.

ZSE TÜBINGEN Zentrum für Seltene Erkrankungen

Institut für Medizinische Genetik und Angewandte Genomik

Deutschland Land der Ideen Ausgewählter Ort 2011

> ZSE TUBINGEN Zentrum für Seltene Erkrankungen